Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Ethoxyanilinium chloride

Xue-qun Fu

Ordered Matter Science Research Center, Southeast University, Nanjing 210096,
People's Republic of China
Correspondence e-mail: fuxuequn222@163.com
Received 23 June 2010; accepted 1 July 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.045 ; w R$ factor $=0.106$; data-to-parameter ratio $=18.9$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$, consists of an almost planar protonated 4-ethoxyanilinium cation with the N atom showing the biggest deviation from the plane formed by all non-H atoms of the cation $[0.066$ (1) \AA]. In the crystal, $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link cations and anions into chains along the a axis. Additional $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions [centroid-centroid distance $=4.873(2) \AA$] stabilize the crystal structure.

Related literature

For background to phase-transition materials, see: Li et al. (2008); Ye et al. (2009); Zhang et al. (2009). For similar structures, see: Fu (2009); Jiang et al. (1996); Zhao (2009).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-} & a=11.422(2) \AA \\
M_{r}=173.64 & b=7.0890(14) \AA \\
\text { Orthorhombic, Pbca } & c=22.887(5) \AA
\end{array}
$$

$V=1853.2(6) \AA^{3}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$Z=8$
Mo $K \alpha$ radiation
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
Data collection
Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)

$$
T_{\min }=0.879, T_{\max }=0.931
$$

046 measured reflections 2116 independent reflections 1655 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.106$
$S=1.08$ independent and constrained refinement
2116 reflections
112 parameters
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 D \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.94(2)$	$2.23(3)$	$3.104(2)$	$154(2)$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.87(3)$	$2.27(3)$	$3.107(2)$	$161(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1$	$0.90(3)$	$2.23(3)$	$3.114(2)$	$172(2)$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots C g 1^{\mathrm{iii}}$	0.93	2.91	$3.654(2)$	138
$\mathrm{C} 7-\mathrm{H} 7 B \cdots C g 1^{\text {iv }}$	0.97	2.89	$3.710(2)$	143

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $x,-y-\frac{3}{2}, z-\frac{1}{2}$; (iv)
$-x+1,-y+1,-z+1$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author is grateful to the Starter Fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2216).

References

Fu, X. (2009). Acta Cryst. E65, o2345.
Jiang, Z.-T., Liesegang, J., James, B. D., Skelton, B. W. \& White, A. H. (1996). J. Phys. Chem. Solids, 57, 397-404.
Li, X. Z., Qu, Z. R. \& Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. \& Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.

Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. \& Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.
Zhao, M. M. (2009). Acta Cryst. E65, o2378.

supplementary materials

4-Ethoxyanilinium chloride

X. Fu

Comment

The crystal structure of 4-ethoxyanilinium perchlorate as well as those of 2- and 4-methoxyanilinium chloride are known (Fu, 2009; Zhao, 2009; Jiang et al., 1996). In this article, the crystal structure of (I) is presented.

The asymmetric unit of the title compound is built by an almost planar protonated 4-ethoxyanilinium cation and a Cl^{-}anion (Fig. 1). C—H $\cdots \pi$ interactions with a C4—H4A $\cdots C g 1$ distance of 3.654 (2) \AA and a C7—H7B $\cdots C g 1$ distance of 3.710 (2) \AA, respectively, as well as $\pi-\pi$ packing interactions of adjacent benzene rings with a $C g 1 — C g 1$ distance of 4.873 (2) \AA, make a great contribution to the observed crystal structure ($C g 1$ is the centroid of benzene ring). Additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding with $\mathrm{N}-\mathrm{Cl}$ distances of 3.104 (2) \AA to 3.114 (2) \AA (Table.1) link the cations and anions into chains along a axis (Fig.2).

Experimental

Single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature of an ethanolic solution of equimolar amounts of 4-ethoxyaniline and $6 M$ hydrochloric acid.

Dielectric studies (capacitance and dielectric loss measurements) were performed using an automatic impedance TongHui2828 Analyzer on powder samples that were pressed into tablets on the surfaces of which a conducting carbon glue was deposited. Dielectric permittivity of the compound was tested to systematically to investigate the possibility of ferroelectric phase transitions (Li et al., 2008, Ye et al., 2009; Zhang et al., 2009). Unfortunately, the temperature dependence of the relative permittivity at 1 MHz varied smoothly from 4.0 to 4.3 and there was no distinct anomaly observed from 93 K to 350 K (sublimation higher than 378 K) in the title compound, suggesting that this compound should not be a real ferroelectric or that no distinct phase transition occurred within the measured temperature range.

Refinement

Positional parameters of all the H atoms for C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}) . \mathrm{H}$ atoms bonded to nitrogen atom were found in the difference maps and refined freely.

Figures

Fig. 1. Molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

supplementary materials

Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.

4-Ethoxyanilinium chloride

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=173.64$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=11.422$ (2) \AA
$b=7.0890(14) \AA$
$c=22.887(5) \AA$
$V=1853.2(6) \AA^{3}$
$Z=8$

Data collection

Rigaku SCXmini
diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 13.6612 pixels mm^{-1} ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.879, T_{\text {max }}=0.931$
17046 measured reflections

$$
F(000)=736
$$

$D_{\mathrm{x}}=1.245 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7266 reflections
$\theta=3.0-27.7^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colourless
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.106$
$S=1.08$
2116 reflections
112 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0383 P)^{2}+0.7382 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
C11	$0.36897(4)$	$0.14153(8)$	$0.73645(2)$	$0.0565(2)$
C3	$0.39597(14)$	$0.6120(3)$	$0.64180(8)$	$0.0382(4)$
O1	$0.39659(12)$	$0.76724(19)$	$0.46863(5)$	$0.0495(4)$
C6	$0.39549(15)$	$0.7056(3)$	$0.52510(8)$	$0.0384(4)$
N1	$0.39087(15)$	$0.5668(3)$	$0.70418(7)$	$0.0456(4)$
H1D	$0.323(2)$	$0.619(3)$	$0.7215(10)$	$0.072(7)^{*}$
H1C	$0.451(2)$	$0.614(4)$	$0.7224(11)$	$0.081(8)^{*}$
H1B	$0.387(2)$	$0.442(5)$	$0.7096(12)$	$0.084(9)^{*}$
C7	$0.34271(19)$	$0.6523(3)$	$0.42485(8)$	$0.0509(5)$
H7A	0.2601	0.6365	0.4333	0.061^{*}
H7B	0.3791	0.5287	0.4240	0.061^{*}
C5	$0.34210(18)$	$0.5419(3)$	$0.54364(9)$	$0.0511(5)$
H5A	0.3060	0.4626	0.5168	0.061^{*}
C4	$0.34242(17)$	$0.4958(3)$	$0.60251(9)$	$0.0507(5)$
H4A	0.3061	0.3858	0.6152	0.061^{*}
C1	$0.45119(17)$	$0.8200(3)$	$0.56533(8)$	$0.0468(5)$
H1A	0.4890	0.9289	0.5528	0.056^{*}
C8	$0.3583(2)$	$0.7490(4)$	$0.36708(9)$	$0.0651(6)$
H8A	0.3226	0.6748	0.3369	0.098^{*}
H8B	0.4403	0.7631	0.3590	0.098^{*}
H8C	0.3220	0.8711	0.3684	0.098^{*}
C2	$0.45113(17)$	$0.7739(3)$	$0.62369(8)$	$0.0456(5)$
H2A	0.4882	0.8517	0.6507	0.055^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0385(3)$	$0.0715(4)$	$0.0596(3)$	$-0.0036(2)$	$-0.0107(2)$	$0.0117(3)$
C3	$0.0278(8)$	$0.0501(11)$	$0.0366(9)$	$0.0017(7)$	$-0.0005(7)$	$0.0041(8)$
O1	$0.0676(9)$	$0.0474(8)$	$0.0334(7)$	$-0.0125(7)$	$-0.0020(6)$	$0.0020(6)$
C6	$0.0387(9)$	$0.0406(10)$	$0.0359(9)$	$-0.0017(8)$	$0.0015(7)$	$0.0015(8)$
N1	$0.0329(9)$	$0.0653(13)$	$0.0387(9)$	$0.0010(8)$	$-0.0008(7)$	$0.0082(9)$

C7						
C5	$0.0576(12)$	$0.0565(12)$	$0.0387(10)$	$-0.0041(10)$	$-0.0017(8)$	$-0.0069(9)$
C4	$0.0571(12)$	$0.0524(12)$	$0.0438(11)$	$-0.0209(10)$	$-0.0067(9)$	$0.0004(9)$
C1	$0.0510(11)$	$0.0532(12)$	$0.0477(11)$	$-0.0204(9)$	$-0.0022(8)$	$0.0079(10)$
C8	$0.0583(12)$	$0.0393(10)$	$0.0428(10)$	$-0.0122(9)$	$0.0003(9)$	$0.0029(8)$
C2	$0.0884(17)$	$0.0686(15)$	$0.0382(11)$	$0.0068(13)$	$-0.0028(10)$	$-0.0032(11)$
	$0.0511(11)$	$0.0438(11)$	$0.0418(10)$	$-0.0087(9)$	$-0.0053(8)$	$-0.0045(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

C3-C4	1.364 (3)
C3-C2	1.373 (3)
C3-N1	1.464 (2)
O1-C6	1.364 (2)
O1-C7	1.431 (2)
C6-C5	1.378 (3)
C6-C1	1.382 (3)
N1-H1D	0.94 (2)
N1-H1C	0.87 (3)
N1-H1B	0.90 (3)
C7-C8	1.500 (3)
C4-C3-C2	120.75 (17)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$	119.51 (18)
C2-C3-N1	119.70 (17)
C6-O1-C7	118.49 (15)
O1-C6-C5	124.45 (17)
O1-C6- ${ }^{\text {C1 }}$	116.03 (16)
C5-C6-C1	119.51 (17)
C3-N1-H1D	110.9 (14)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$	110.6 (17)
H1D-N1-H1C	107 (2)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	110.7 (18)
H1D-N1-H1B	107 (2)
H1C-N1-H1B	111 (2)
O1-C7-C8	107.79 (18)
O1-C7-H7A	110.1
C8-C7-H7A	110.1
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	110.1
C8-C7-H7B	110.1
H7A-C7-H7B	108.5
C7-O1-C6-C5	-2.4 (3)
C7-O1-C6-C1	178.51 (17)
C6-O1-C7-C8	-178.74 (17)
O1-C6-C5-C4	-177.57 (19)
C1-C6-C5-C4	1.5 (3)
C2-C3-C4-C5	-0.8 (3)
N1-C3-C4-C5	177.04 (18)

C7-H7A	0.9700
C7-H7B	0.9700
C5-C4	1.386 (3)
C5-H5A	0.9300
C4-H4A	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.375 (3)
C1-H1A	0.9300
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
C2-H2A	0.9300
C6-C5-C4	119.76 (18)
C6-C5-H5A	120.1
C4-C5-H5A	120.1
C3-C4-C5	119.98 (18)
C3-C4-H4A	120.0
C5-C4-H4A	120.0
C2-C1-C6	120.50 (17)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.7
C6-C1-H1A	119.7
C7-C8-H8A	109.5
C7-C8-H8B	109.5
H8A-C8-H8B	109.5
C7-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
C3-C2-C1	119.47 (17)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.3
C6-C5-C4-C3	-0.3 (3)
O1-C6-C1-C2	177.53 (18)
C5-C6-C1-C2	-1.6 (3)
C4-C3-C2-C1	0.7 (3)
N1-C3-C2-C1	-177.14 (18)
C6-C1-C2-C3	0.5 (3)

supplementary materials

Hydrogen-bond geometry (A, ${ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.94(2)$	$2.23(3)$	$3.104(2)$	$154(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	$0.87(3)$	$2.27(3)$	$3.107(2)$	$161(2)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl1}$	$0.90(3)$	$2.23(3)$	$3.114(2)$	$172(2)$
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.93	2.91	$3.654(2)$	138
$\mathrm{C} 7 — \mathrm{H} 7 \mathrm{~B} \cdots \mathrm{Cg} 1^{\text {iv }}$	0.97	2.89	$3.710(2)$	143

Symmetry codes: (i) $-x+1 / 2, y+1 / 2, z$; (ii) $-x+1, y+1 / 2,-z+3 / 2$; (iii) $x,-y-3 / 2, z-1 / 2$; (iv) $-x+1,-y+1,-z+1$.

supplementary materials

Fig. 1

Fig. 2

